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Abstract

Our answer is `no'. Throughout the 20th century, the majority of structural geologists have worked with a conceptual basis

that includes only isolated fragments of continuum mechanics (e.g. strain analysis, constitutive laws, force balance, Mohr's
circles, or conservation of volume), and this has resulted in the proliferation of ad hoc models of structural and tectonic
processes and their products. Furthermore, at a more abstract level, the possibility that mechanical quantities of interest (e.g.
displacement, velocity, stress, or temperature) vary continuously in the spatial coordinates and time is largely ignored. These two

conceptual oversights are related: without the mathematical concept of partial di�erentiation (as in the biharmonic equation of
elasticity theory that brings strain compatability, Hooke's law, and stress equilibrium together) these spatial and temporal
variations cannot be accounted for explicitly. Thus, the mechanical concept of boundary- and initial-value problems, formulated

in terms of partial di�erential equations, has not been adopted as a necessary tool by most practitioners of structural geology
and tectonics. We illustrate our case with two examples: the development of chevron folds and of eÂ chelon veins. We show how
the ad hoc approach, while successful at one level, lacks predictive capability and possesses a low degree of refutability. Further

progress in understanding these (and other) products of structural and tectonic processes can be made through an integrative
approach using a complete and self-consistent mechanics. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

`` . . .by the turn of the century it was fully realized
that for an isotropic material the strain energy must
involve the strain through the three strain invar-
iants. It was also realized that if the form of this
relationship were known for a particular material,
stress±strain relations (or as we should now say,
constitutive relations), equations of equilibrium,
etc., and indeed the whole formalism for a complete
mechanics of the material can be derived.'' Ronald
S. Rivlin, in Barenblatt and Joseph (1996).

Structural geologists are concerned with the question
(Dahlstrom, 1969): ``What is the structure?'' Geometric
idealization of structure is made to facilitate inter-

polation and extrapolation from incomplete data

throughout a volume. With the idea that restoration of

a candidate structure to initial or earlier states pro-

vides a check on interpretation (Dahlstrom, 1969),

methods of carrying this out were devised. The sim-

plest such method may amount to tabulating bed

lengths to determine whether, when carried back to a

pin line, they all have the same value. A set of inter-

mediate restored con®gurations may be produced,

based upon constraints imposed by the available struc-

tural and geochronological data.

A second question is: What process produced the

structure of interest? Even though a picture of the

motions involved in going from a prior state to the

®nal structure may be obtained from a postulated kin-

ematic scheme, this does not provide a complete

description of the process, since no causative physical

principles are involved. A mechanist would be skepti-

cal of the motions proposed, both in terms of their
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broader aspects and as to their capturing essential, but
subtler, elements. In such kinematic modeling, the
exclusive requirement is that the model ®ts obser-
vations of structural geometry, and any con¯ict with
physical principles is ignored.

An unavoidable feature of such models is the adop-
tion of a `kinematic mechanism' capable of being writ-
ten down in a simple algebraic form which relates the
motion everywhere in the deforming medium to infor-
mation at special positions within the structure. Put
another way, the motion within the medium is
obtained by applying a rule for transmitting infor-
mation from a `template' to any other point in the
medium without degradation. For example, given the
geometry of one layer surface in a folded sequence to
be approximated using the similar template, all other
surfaces are determined by a suitable translation of
this surface along a line in the pro®le plane and paral-
lel to the axial plane. As in this example, information
is usually transmitted unidirectionally. Such schemes
are fundamentally at odds with what happens in the
physical world, in which causality dictates that local
behavior be directly coupled to neighboring regions
only by the pertinent ®eld equations. Information on
traction, velocity, or displacement, in a mechanical
problem, on all bounding surfaces is transmitted
throughout the interior by the application of the ®eld
equations.

Prompted by the comments of reviewers, two points
require careful attention in advance. The ®rst point
concerns the role of ®eldwork in providing a basis for
mechanical modeling. A reviewer suggested that mech-
anical modeling applied to a particular structure or
region builds on the extensive ®eldwork carried out
previously. Certainly, such work provides a basis for a
particular line of investigation and may convey, expli-
citly, the problems outstanding. If, however, the ®eld-
work and interpretation are carried out with detailed
kinematic interpretation, but no appeal to a complete
mechanics, we commonly ®nd that certain types of ob-
servations and sets of quantitative data are over-
looked. An example might be the geometric details
and extent and degree of fracturing and other damage
in the region of interaction between two fault seg-
ments. Another example is the pattern of folding over
a large cross-sectional area and the sequence of layer
thicknesses and types in a folded multilayer. Such
qualitative details and quantitative datasets will often
®rmly establishÐor refuteÐpostulates of a process
model that will apply to a broad range of additional
®eld examples.

The second point concerns the doubt, expressed by
one reviewer, that a complete mechanical model has
been developed if, in it, major simpli®cations or
approximations are madeÐfor example the use of
`frictionless faults' (Chester and Fletcher, 1997; Crider

and Pollard, 1998). Complete does not imply the im-
mediate simulation of all detail and complexity in the
process leading to a particular structure or structural
type. Instead, it requires that an explicit choice has
been made of constitutive relations, boundary con-
ditions, and initial conditions, which, together with
the fundamental laws of physics, produces a closed
set of relations from which all results follow. If the
model results do not conform in all aspects with the
current database, a more re®ned model may be for-
mulated by a di�erent choice of these mutable el-
ements. The explanatory power of simpler models is
®rst examined, often providing signi®cant physical
insight, then robustness as well as detailed simulation
are pursued.

Studies of chevron folds and eÂ chelon veins illustrate
the contrast between kinematic modeling, augmented
by an incomplete mechanics, and a complete mechan-
ical analysis employing the ®eld equations. We begin
by discussing the formulation and results of Ramsay's
(1967, 1974; also Ramsay and Huber 1987), geometric,
evolutionary, and kinematic model for chevron folds.
Ramsay modi®ed the model of de Sitter (1956) to bet-
ter ®t the geometrical attributes of the folds he
observed. Others have given an analysis of chevron
folding using a complete mechanics. For example,
Bayly (1964), Cobbold (1976), and Casey and
Huggenberger (1985) treat the layer sequence as a
homogeneous anisotropic viscous medium. Williams
(1980) presents ®nite-element and geometric models
that take into account the discrete layers. We augment
these studies with results from an analysis of a multi-
layer that describes buckling, kinematics, and aspects
of the transition between sinusoidal and chevron form
(see also Johnson and Pfa�, 1989; Pfa� and Johnson,
1989).

As a second example of the use of a complete
mechanics to analyze a problem in structural ge-
ology, we turn to the subject of eÂ chelon veins. Early
investigations of eÂ chelon fractures involved labora-
tory analogue experiments using clay cakes (Riedel,
1929; Cloos, 1955) and glass rods (Sommer, 1969).
These experiments provided the motivation for the
study of two di�erent mechanisms for the formation
of eÂ chelon vein segments: initiation within a shear
zone (Ramsay, 1967) and propagation from the tip
of a parent fracture (Pollard et al., 1982). We
review this history, point out how much of the sub-
sequent research involved incomplete mechanical
analyses, and provide a speci®c example of a com-
plete analysis by Olson and Pollard (1991). Finally,
we review how a third mechanism, self-organization
driven by mechanical interaction, was discovered
during numerical experiments which provided visual-
ization of the heterogeneous stress and strain ®elds
near fractures.
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2. The de Sitter±Ramsay model for chevron folds

Ramsay (1974) noted that mechanical modeling of
folding up to that time had chie¯y analyzed fold in-
itiation, but that ``structural geologists are also inter-
ested in the later stages of fold development and in
how the geometric forms of the initial folds become
modi®ed as deformation proceeds . . . .'' Commenting
upon laboratory and ®nite-amplitude numerical
models, he noted:

``The geometric results of these model experiments
can be compared with those of naturally deformed
rock layers. If the cross-section layer geometry and
®nite strain states are closely similar, then we might
deduce that the rock behaved like the materials of
the model, but it is possible to get the same ap-
proximate geometry from di�erent materials under-
going di�erent deformation histories. However, to
many who have made detailed studies of naturally
deformed rock layers, the correspondences between
the model work and natural process are extremely
close. I, for one, am convinced that this geometric
correspondence is not just by chance.''

Ramsay then clearly states the premise behind the
altogether di�erent approach from the complete mech-
anics of these fold modelers, that upon which all kin-
ematic modeling is based. He states:

``Although in general it is not possible to ®nd the
exact equations that account for progressive fold
growth, ®eld geologists know that certain styles of
fold structure keep recurring, and some of them are
geometrically fairly simple. Because of their simpli-
city, one is tempted to try to discover the functions
that might express their evolutionary development.
The chevron fold style is such an example, and in
this paper, I attempt to make a geometric analysis
of the progressive development of such folds. The
concept behind this study is to set up a geometric
model based on controls imposed by observations
on naturally deformed, layered rocks, and then to
investigate the properties of this model to see if any
of its special geometric features help to aid an
understanding of the geometric characteristics of
naturally deformed rocks.''

We make four points here. First, we assert that ``the
exact equations that account for progressive fold
growth'' are the ®eld equations, including the constitu-
tive postulates, and boundary and initial conditions
used in a complete mechanical analysis. Second, it
seems implausible that one may discover, by consider-
ation of the geometric features of a structure alone, a
functional form that fully describes its kinematic evol-

ution. Third, how the `simple' straight-limbed, narrow-
hinged, chevron fold style originates itself constitutes a
®rst-order problem. Fourth, the behavior of anoma-
lously thick and thin layers in a folded sequence, a key
`prediction' of Ramsay's model, cannot be understood
on the basis of purely geometric reasoning.

A more general point builds upon these. Many
structural geologists would assert that mechanical
analysis of structures is useful as an additional study,
following one in which geometric and kinematic
reasoning alone are brought to bear in the course of
detailed study of deformed rocks. The latter method-
ology is that which is strongly advanced and lucidly
illustrated in Ramsay's paper on chevron folds; none
of his basic results are based upon mechanical reason-
ing. Later, as an after-thought, he derives additional
results based on the postulate that the layers behave as
linear viscous ¯uids. We assert that such a method-
ology is ¯awed for the reason that it leaves out essen-
tial concepts. These concepts are required not only to
provide valid explanations for observed features, but
also to motivate the detailed examination of the rocks
and the collection of ®eld data necessary to support,
modify, or refute them.

2.1. Three levels in Ramsay's model

In Ramsay (1974), the de Sitter (1956) model and
his earlier model (Ramsay, 1967) are extended to
include the presence of weak interbeds. We discuss
only the limiting case in which shearing in weak beds
of ®nite thickness is replaced by interfacial slip.

De Sitter's and Ramsay's models have three hier-
archical levels. The ®rst level is that of geometric ideal-
ization. At the second level, an additional assumption
is introduced that provides an evolutionary model
describing the temporal sequence of fold form: con-
stant limb length is assumed. At the third level, a
detailed kinematics is proposed. We denote this the
`kinematic model.' Only at this level is the motion
fully described, although the evolutionary model
describes elements of it. All kinematic models may
have this hierarchical structure.

The geometric model of de Sitter (1956) treats an in-
®nite stack of layers of equal thickness. Two axial
planes remain perpendicular to the initial limb seg-
ments at zero dip, isolating a single fold limb.
Adjacent fold limbs must have mirror symmetry about
the axial planes. Layer segments in de Sitter's model
have length L and thickness H, with lateral faces nor-
mal to the layer surfaces. The geometric model has
segments stacked with their extreme points just touch-
ing the axial planes.

In the evolutionary model, the layer segments are
rigid, but slide relative to each other. The model is
thus of the `bookshelf' variety. At zero dip, the span
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of the limb is L. At a dip y, the distance between the
axial planes is equal to the distance between the
extreme points on the segments, and is given by

L�1� e� � Lcosy�Hsiny �1�
where e is a measure of the bulk shortening strain
(Ramsay, 1967), with ÿ1 < e< 0. The dilation in
cross-sectional area per limb segment is given by

DA=�LH � � ntany � ny �2�
where n=H/L. Since the kinematics of folding is of
the bookshelf type, the evolutionary and kinematic
models coincide.

De Sitter's model does not explicitly address layer
deformation in the hinge regions except, quoting
Ramsay (1974), that he supposes that the layers ``lose
cohesion along the fold axial surface, thereby produ-
cing a series of dilational openings along the hinge
zone.'' The layers of the natural chevron folds exam-
ined by Ramsay (1974) are continuous, have sharp
inner hinge pro®les, rounded outer hinge pro®les, and
uniform thickness around the hinges. Ramsay's model
re®nes de Sitter's by eliminating its de®ciency in
approximating the fold form in the hinges.

Ramsay's model possesses the same hierarchical
order of geometric, evolutionary, and kinematic
models. This is not the manner in which he presents it.
The signi®cance of this order of presentation is two-
fold. First, we believe it is the way in which such
models are usually conceived. They start with an ideal-
ization of the ®nal geometry and move, via the evol-
utionary and kinematic models, back to some
approximation of an initial, layered, but otherwise fea-
tureless, initial con®guration. To reach the ®nal struc-
ture, certain essential features must be introduced into
the initial con®guration, such as a system of bed-paral-
lel faults and ramps. In the case of chevron folds, a
pattern of incipient folds with straight limbs but very
small dip must be posited. How this embryonic but
controlling structure comes about is not addressed.
Second, to the extent that a comparison can be made,
this order is precisely the opposite of that in a com-
plete mechanical model. Such a model goes forward
from speci®ed initial con®guration and properties to
generate the ®nal structure, whose form is initially not
even known. The stage of structure initiation is dealt
with.

Ramsay's order of presentation is similar to that for
a mechanical model. While the restrictions placed by
®eld observations are ®rst listed, the formal presen-
tation begins with a statement of the mathematical re-
lations de®ning the internal deformation of a single
layer. Such kinematic rules are commonly associated
with a mechanism of deformation, here, the shearing
of inextensible but ¯exible sheets of in®nitesimal thick-

ness. Such a mechanism substitutes, approximately, for
the constitutive relations in a complete mechanical
model. The evolutionary model for folding is `derived'
by application of the kinematic model.

In Ramsay's geometric model (Fig. 1a), each limb
segment is idealized as a straight-sided layer segment,
as in de Sitter's model. But, to bring the layer continu-
ously through the hinges, circular sectors with radius
equal to the layer thickness and with angle equal to
the dip are added to the ends of each segment. Sector
apices point in opposite directions, so that the outer
hinge surfaces are smooth circular arcs and the inner
hinge surfaces have a sharp angular discontinuity.
Layer thickness through the hinges is uniform. The
length of the limb, L, is the sum of the straight seg-
ment plus the circular arc. Note that we could readily
describe the geometry of an idealized set of chevron
folds with layers of di�erent thickness by means of
this model (Fig. 1b).

In the evolutionary model, the limb segments are
assumed to maintain constant length. From a trigono-
metric analysis for a single layer in the folded
sequence, we may derive the relation (Ramsay, 1974).

1� e � �1ÿ ny�cosy� nsiny: �3�

Fig. 1. Two examples of the geometric model for chevron folds. (a)

Layers have equal thickness. (b) Layers have unequal thickness;

while this geometric model might be used to idealize the form of a

set of folded layers, it cannot be treated by Ramsay's evolutionary

model.
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Note the similarity to Eq. (1). This relation states
that the bulk shortening at any dip is a function of
n=H/L. Thus, folding of a sequence in which the
layers are not of uniform thickness cannot be
accommodated by this evolutionary model without
mismatch along the limbs. Ramsay (1974, p. 1742)
remarks:

``Straight-limbed chevron folds are not geometri-
cally stable where pronounced thickness variations
occur in folds having constant limb length. This
explains why chevron folds are generally localized
in regularly bedded multilayer sequences such as are
found, for example, in typical turbidite ¯ysch depos-
its, and it also leads to an explanation of why the
ratio of limb length to thickness of the competent
layers generally exceeds 10/1.''

Even equally thick layers do not ®t together without
dilation at the hinges. While this violates the constraint
of conservation of cross-sectional area often applied in
kinematic models, the dilation simulates the saddle
reefs commonly seen in chevron folds, and is thus a
point in favor of the model. The dilation

DA=�LH � � n�tanyÿ y� � ny3=3 �4�

is much smaller than that in the de Sitter (1956)
model, Eq. (2).

Notice that the evolutionary model, the fundamental
result of which is Eq. (3), neither depends upon how
the layers initially achieve the idealized chevron form
nor how they maintain it at constant limb length as
the folds tighten. That is, the evolutionary model con-
strains the internal kinematics of the layer but does
not determine it. Ramsay's kinematic model will be
presented in a later section.

Up to this point, the model may have been worked
out as we have presented it here. A geometric idealiz-
ation was posed without restriction on layer thickness.
The evolutionary behavior for a single layer of arbi-
trary initial thickness in the fold limb, expressed by
Eq. (3), was obtained. It could then be seen that only
layers of the same thickness would ®t together. The in-
ability of the model to accommodate layers of di�erent
thickness led Ramsay (1974) to the notion of `geo-
metrical stability'. This term merely expresses the in-
ability of his evolutionary model to accommodate
layers of unequal thickness. It has no apparent general
signi®cance, as for example, the principle of `thermo-
dynamic stability'.

2.2. `Geometric stability' and the behavior of thicker and
thinner layers

A striking feature in chevron folds (Ramsay, 1974)

is the bulbous hinge structure produced in a much
thicker layer within a stack of more-or-less uniformly
thick layers. Anomalously thin layers show stretching,
as indicated by bed-normal veins.

Consider the discrepancy when a sequence contains
a layer with di�erent thickness, H �$H. Since the
bulk shortening must be invariant through the stack,
from Eq. (3)

�LÿH �y��cosy� �Hsiny�

� �LÿHy�cosy�Hsiny: �5a�

Note that the limb length of the thicker layer is the
same as that of the others. Since the discrepancy is
small for moderate dips, we expand Eq. (5a) to lowest
order in the dip angles, and write y �=y+y '; we ®nd

y 0 � �H � ÿH �y2=�3L�: �5b�

The limb dip is larger for a thicker layer; if H �=4H
and L/H = 10, the discrepancy is 1.68 at a dip of 308.
If the thick layer has the same dip, it will `stick out'
beyond the axial planes, since it achieved that dip at a
lower bulk shortening. A bulbous hinge structure is
formed by `squeezing' the ends back in, with all adjust-
ment in the hinge regions where room is provided by
the space arising from dilation. A thinner layer, with
H �< H, has a lower dip at the same bulk shortening,
and at the same dip will not reach the axial planes.
More extension in a thinner layer is thus expected,
possibly accommodated by layer-normal veins, as
observed (Ramsay, 1974).

From Eq. (5b), the discrepancy in limb dip for
unequal layer thickness in the stack is reduced for lar-
ger L/H values. Ramsay's observation that ``chevron
folds are generally localized in regularly bedded multi-
layer sequences'' is rationalized by the consequence
that, for such sequences, such discrepancies are minor.

Does the fact that this consequence of Ramsay's
evolutionary model correlates with several obser-
vations from natural chevron folds imply that it
explains them? It is important to critically examine this
point, since such a result may equally well be carried
over to other evolutionary models. A variant of
Ramsay's model can accommodate layers of unequal
thickness. The simplest version involves the uniform
layer-parallel strain of the anomalous layer, resulting
in a change in length from L to L �. Conservation of
area requires

L�H � � LH ��0� �6a�

where H �(0)=fH is the initial thickness of the anoma-
lous layer and L �(0)=L. The layer strain required to
maintain the ®t of the layer within the stack is
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L�=Lÿ 1 � �1ÿ f �n�tanyÿ y� � �1ÿ f �ny3=3: �6b�

Since, by Eq. (6b), any adjustment in length will
only become quantitatively signi®cant at a substantial
limb dip, the fold pattern will have already been estab-
lished by buckling.

Accordingly, two variants of the evolutionary model
are consistent with the same geometric idealization.
One does not accommodate layers of di�erent thick-
ness, but the other does. The latter model excludes the
formation of bulbous hinge structures, but does
describe the deformation of a thin layer. A model
lying between these extremes might also admit the bul-
bous hinge structure. None describe the process that
formed the folds.

In a geometric or mechanical model, no account is
given of how the limb lengths of chevron folds are
established. Ramsay suggests that since the mis®t his
model leads to is less for larger limb-length to layer-
thickness ratios, such limb lengths will, in fact, be
established, a value of at least 10:1 being suggested. In
fact, the pattern of folds is established by some process
such as buckling or the intersection of kink bands, the
details of which are dependent upon the rheological
properties, conditions of deformation, and the initial
con®guration (Pfa� and Johnson, 1989).

Does Ramsay's evolutionary model `explain' the
considered phenomena? It would seem that an expla-
nation must rather lie in the determination, within a
description of the process of folding, of the physical
circumstances and conditions that determine these.
Such an analysis leads to a model for both the
initiation and evolution of fold form and determines
the internal motions of the layers and the strain
distribution within them. If the model does not ®t all
observations, one may modify it to close the gap.

2.3. Deformation within the layers: Ramsay's kinematic
mechanism

To further `` . . .try to discover the functions that
might express their evolutionary development,''
Ramsay proposed a kinematic mechanism from which
the internal deformation of the layers and the inter-
facial slip may be computed. One motivation for this
is that it appears to lead to an explanation for the
`lock-up' of chevron folds at a limb dip of approxi-
mately 608. Another motivation is to obtain the com-
pleteness of description seen in a mechanical model.

The kinematic mechanism is uniform, layer-parallel
shear. Shearing must take place so that the transition
between the straight portion of the layer and the
curved hinge sectors is maintained, with continuity at
the hinges. While the evolutionary model is based, in
part, on such continuity, it does not require a descrip-
tion of how this is accomplished. The constraint at the

hinge leads to the imposition of uniform shear along
the limbs, far from the hinges relative to layer thick-
ness (Bayly, 1976).

Such kinematic mechanisms are commonly related
to the constitution of the deforming material. However,
they are not constitutive relations because there is no
connection implied or explicit, between stress and rate
of deformation. If the considered material is layered
rock, shear parallel to layering, or normal to it, as in
kinking, is related to the `weakness' of interfaces or
soft interbeds relative to the `strength' or `competence'
of sti� layers. The use of layer-parallel shear within
the layers is problematic because nothing in the
appearance or likely constitutive behavior of the sti�
layers would make this mechanism probable as the
dominant mode of deformation (Bayly, 1976).
Moreover the proposed kinematic mechanism does not
simulate the observed strain related to bending in the
hinges (see Fig. 5a). If one could refer to mechanicsÐ
and, again, no formal procedure for doing so is avail-
ableÐthe implied jump in shear stress along the axial
surface would violate the condition of stress equili-
brium. Bayly (1976) makes much the same obser-
vations in a comment on Ramsay's paper.

The change in bulk shear with bulk shortening,
dg/de, is considered signi®cant for this kinematic
model, and certain conclusions are drawn from its
variation with limb dip. Since g=tany, Eq. (3) gives

dg=dy � �ÿ�1ÿ ny�sinycos2y�ÿ1 �7�

and Eq. (1) can be used to relate e to y. From these re-
lations ÿdg/de vs ÿ100e may be computed, as in
Ramsay (1974, ®g. 2). Since Eq. (7) is in®nite at e=0,
so is ÿdg/de. For small n, this quantity has a minimum
at e=ÿ0.18 (18% shortening) and a limb dip y=358,
and then increases sharply in the range of 60±70%
shortening, or y=66±728.

From this behavior, Ramsay (1974) draws the fol-
lowing conclusions. ``Inside the competent layers, the
rates of shear strain are very high at the start of fold-
ing and subsequently decrease. There is, therefore, a
critical threshold that must be overcome before folding
of the chevron style can begin to develop. For any
compressive stress deviator acting along the layer, the
threshold is a function of dip; certain minimum dip
values must be attained (probably by buckling instabil-
ity) before folding goes on in the manner suggested by
the model analysis. The threshold of folding is also
controlled by the internal ¯ow properties of the com-
petent layers and is not dependent upon the frictional
e�ects along surfaces separating the competent layers.''

These remarks, while seemingly based on mechanical
principles, make no appeal to them explicitly. Buckling
involves layer-parallel shortening, is strongly sensitive
to the interfacial conditions, and involves negligible,
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rather than large, layer-parallel shear (see Fig. 5).
While a transition between sinusoidal and chevron fold
form occurs, nothing usefully described as a `critical
threshold' is involved. The kinematic model does not
describe fold initiation or the transition from sinusoi-
dal to chevron form. At y=0, which the model ident-
i®es with e=0, no amount of layer-parallel slip or
shear will lead to bulk shortening. This is the only
meaning of the in®nity in dg/de.

The low values of ÿdg/de at intermediate limb dip
are associated with the `ease of formation of the folds,'
whereas large values at large limb dip are associated
with `lock-up' of chevron folds (Ramsay, 1974, p.
1742, points 2 and 3). Again, no explicit relation
de®nes `ease of folding,' which might presumably be
tied to the operative stress. Ramsay's ideas appear to
derive from an assumption of frictional behavior, but
an increase in ÿdg/de has no bearing on this, since, in
simple frictional behavior, the rate of slip is irrelevant.
In the viscous model (see Fig. 2), `lock-up' does not
occur.

An attempted link is often made, as here, between
results for an ad hoc kinematic model, in which phy-
sics plays no part, and intuitive ideas as to process.
However plausible these may seem, they provide no
substantive basis for further investigation because the
relevant physical quantities (stress, constitutive proper-
ties, friction) are absent in the ad hoc model. The
mechanical modeling described below shows how the
transition from sinusoidal to chevron folding takes
place and provides a detailed picture of the kinematics,
evolution, and fold form. Each of the two models is
set up by a choice of constitutive relations and bound-
ary and initial conditions.

3. Mechanical model for chevron folds

3.1. Equivalent anisotropic medium

A mechanical analysis of chevron folds has been
based on the constitutive relations for a ®nely layered
composite (Bayly, 1964). With further development,
this approach leads to a complete approximate
theory (Biot, 1965a,b; Cobbold, 1976; Casey and
Huggenberger, 1985), in which only the e�ects of
®nite layer thickness and the details of behavior in
the fold hinges are missing.

Bayly (1964) considers the alternation of two layer
types of di�erent thickness and viscosity. Because
spatial variation in behavior along the fold limb is
ignored, it may be represented by that in an aniso-
tropic viscous ¯uid, characterized by a viscosity Zn
in shortening or extension parallel to layers, re-
spectively, and a viscosity Zs in shear. Bayly (see
also Chapple and Spang, 1974) gives expressions
for these viscosities for a composite of alternating
layers. In the present case, we take the interfacial
slip rate proportional to the resolved shear stress.
If x ' and z ' denote directions parallel and normal
to the layers, respectively, the slip velocity for a
single interface is

Dfu 0g � bs
0
xz: �8�

Expressed as a shear rate added to the shear across the
layer whose viscosity is Z, we have for the bulk rate of
shear

D
0
xz � ��1=2Z� � b=2H �s 0xz � �1=2Zs�s

0
xz: �9a�

The rate of layer-parallel shortening or extension is

D
0
xx � �1=2Z��s

0
xx ÿ s

0
zz� � �1=2Zn��s

0
xx ÿ s

0
zz�: �9b�

The ratio of viscosities

m � Zn=Zs � 1� bZ=H � 1� 1=o� �10�

where m is the strength of anisotropy, plays an import-
ant role in the subsequent analysis. The slip parameter,
o �, enters into results given later for the discrete
multilayer.

If axes x and y are parallel to the direction of short-
ening and parallel to the axial planes, tensor trans-
formation yields, from Eqs. (9a) and (9b)

2ZnDxx � �cos22y�msin22y��sxx ÿ szz�=2
ÿ �mÿ 1�cos2ysin2ysxz

2ZnDxz � ÿ �mÿ 1�cos2ysin2y�sxx ÿ szz�=2
� �sin22y�mcos22y�sxz: �11�

Fig. 2. Rates of (a) layer-parallel shortening or extension and (b)

layer-parallel shear for the anisotropic medium model as a function

of limb dip, for m= 1, 2, 4, 8, and 32.
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If a symmetric pair of limbs undergoes shortening nor-
mal to the axial plane at a rate Dxx, the shear stress on
the axial plane, sxz, vanishes. The relations Eq. (11)
then yield

Dxz � ÿ�mÿ 1�cos2ysin2y�cos22y

�msin22y�ÿ1Dxx: �12�

Transforming back to the components referred to
coordinates x ' and y ', the rates of shear and shorten-
ing or extension along the layers are, for a left-dipping
limb,

D
0
xz � ÿmsin2yDxx=�cos22y�msin22y� �13a�

D
0
xx � cos2yDxx=�cos22y�msin22y�: �13b�

A relationship equivalent to total shear in the limb,
ÿdgS/de, can be derived from Eqs. (13a) and (13b),
since

ÿdgS=de � ÿ�dgS=dt�=�de=dt�

� ÿ2D 0
xz=��1� e�Dxx�: �13c�

Comments on this quantity were made earlier. Since,
by Eqs. (13a) and (13b), ÿdgS/de only relates to layer-
parallel shear and interfacial slip, it is unlikely to pro-
vide by itself much insight into the folding process. We
accordingly turn to a direct treatment.

For a straight-limbed chevron fold, Eqs. (13a) and
(13b) su�ce to describe its evolution. By consideration
of the geometry (Bayly, 1964; Cobbold, 1976; Bayly
and Cobbold, 1979):

d�tany�=dt � ÿ2ftany� �mÿ 1�sin2ycos2y=�cos22y

�msin22y�gDxx: �14�

From Eq. (14) we may compute the evolution in the
dip of the fold with bulk shortening. Since, for y=0,
the right-hand side of Eq. (14) vanishes, some initial
dip is required for folding to occur. The relation
between bulk shortening and dip depends on initial dip
(see Bayly, 1964). Layer-parallel shortening is signi®-
cant at low limb-dip, and depends upon the strength
of anisotropy, m (Fig. 2). Above a dip of 458, the layer
undergoes a superposed extension [Eqs. (13a) and
(13b) and Fig. 2]. These features are not present in the
ad hoc evolutionary model. The deviatoric stress
needed to maintain the rate of bulk shortening (Fig. 3)
is

ÿ�sxx ÿ szz� � 2ZnDxx�cos22y�msin22y�ÿ1: �15�
Tightening of the fold may be kept track of either

by the limb dip, y, or by its tangent, as a function of
some measure of the bulk shortening (see Cobbold,
1976). An easily visualized measure is the ratio of
the span of the fold limb to its initial value,
X/X0=exp(Dxxt ). An initial dip is speci®ed at X=X0.
Limb dip as a function of X/X0 is shown in Fig. 4(a)
for an initial dip of 18 and for the values m = 1, 2, 4,
8, 16, and 128. For the isotropic ¯uid, m= 1, the
ampli®cation is purely kinematic (here, a term in
mechanics corresponding in this case roughly to `pas-
sive folding').

The rate of growth in slope, dy/dt, in radians, where
t=|Dxx|t, vs dip (Fig. 4b) more clearly distinguishes
qualitatively di�erent phases in fold growth. Two sets
of curves are shown for m = 1, 2, and 8. The curves
meeting at 458 are the exact expressions obtained from
Eq. (14). Beyond 458 all curves fall with little di�er-
ence between them. The other curves approximate Eq.
(14) to terms0y 3. The approximation is adequate over
a portion of the period of rapid growth, but does not
accurately capture the magnitude or position of the
maximum rate of ampli®cation or the later behavior.
A corresponding approximation for a viscous multi-
layer may also be obtained. It will have the same de-
®ciencies, but both provide a good description of the
sinusoidal-to-chevron transition (the result for the vis-
cous multilayer is given later).

Fig. 3 gives the variation in the driving deviatoric
stress, Eq. (15), normalized by 2Zn|Dxx|, with limb dip
for m = 1, 2, 4, 8, 16, and 128. The minimum value at
458 is 1/m; the breadth of the region of minimal stress
increases with m. As Ramsay (1974) notes, in the case

Fig. 3. Applied deviatoric stress, [(sxxÿszz)/2]/(2ZnDxx), required for

straight-limbed folding in the anisotropic viscous ¯uid, as a function

of limb dip, y, for m= 1, 2, 4, 8, 16 and 128. The Ramsay model is,

in a sense, approached when m is very large, in which case the stress

level remains low for limb dips well beyond values suggested for

lock-up.
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of alternating sti� and soft layers that behave in a vis-
cous manner, the notion of fold `lock-up' does not
apply. Fig. 2 shows the rates of layer-parallel shorten-
ing or extension and of layer-parallel shear as func-
tions of limb dip for m = 1, 2, 4, 8, and 32. For
m = 32, appreciable shortening only occurs through

the ®rst 108 of dip and appreciable extension only
after 808; the latter is not likely realized in most natu-
ral cases.

A restriction of the analysis to straight-limbed folds
need not apply (Cobbold, 1976; Casey and
Huggenberger, 1985). For symmetric folds of arbitrary
form undergoing shortening normal to the axial
planes, Eq. (14) is the material time derivative of the
tangent of the local dip angle and the rate of shorten-
ing, Dxx, is uniform across the fold. The evolution
equation for the fold form is then

D�tany�=Dt � @ �tany�=@ t�Dxxx@ �tany�=@x �16�
where this quantity is given by Eq. (14). The result of
Eq. (16) allows us to follow the transition between an
initial sinusoidal form to a chevron form. These forms
may be represented by a trace parallel to the layering
with height above its mean level (see also Hudleston,
1973).

z�x,t� � Acos�lx� � A0cos�3lx�: �17�
The amplitudes A, A0 and the wavenumber l=2p/L,
where L is the wavelength, are functions of time;
l(t )=l(0)exp(Dxxt ). Since tany=dz/dx, Eqs. (14) and
(16) provide the evolution equations for A and A0

dA=dt � �q11A� q13�lA�2A�Dxx

dA0=dt � �q33A0� q31�lA�2A�Dxx: �18a�
For the anisotropic medium:

q11 � q33 � 4�mÿ 1� � 1

q13 � ÿ�4m2 ÿ 5m� 1�

and q31 � �1=3��4m2 ÿ 5m� 1�: �18b�
Integration of Eqs. (18a) and (18b) to the same

order of approximation yields

A�t� � A0fexp�q11t� ÿ �q13=2q11��lA0�2�exp�q11t�

ÿ exp�3q11t��g

A0�t� � A0�q31=�3q11 ÿ q33���lA0�2�exp�q11t�

ÿ exp�3q11t�� �19�

where A0=A(0), A0(0)=0, and t=|Dxx|t.
The transition between the sinusoidal and chevron

forms is recorded in the value of the amplitude ratio
A0/A. At the dip at which the approximation breaks
down for the value m = 8 in the anisotropic medium
(Fig. 4b) and for an initial dip of 18, y=6.68 at

Fig. 4. (a) Evolution of the dip of a fold limb with an initial dip of

18 vs shortening measured by the current to initial span of the limb

normal to the axial plane, X/X0, for m= 1, 2, 4, 8, 16 and 128. The

result for the isotropic medium, m = 1, is just the kinematic or pas-

sive ampli®cation. (b) The rate of change in dip, dy/dt, normalized

by the bulk rate of shortening, |Dxx|, as a function of dip, for m= 1,

2 and 8. The upper curves are the exact result; the curves coinciding

with these at low limb dip are expansions to third-order terms in the

tangent of the dip angle. Near coincidence of the curves de®nes the

range in which approximations to this order are likely to give good

results for other quantities, as in those illustrated in Figs. 5 and 6.
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X/X0=0.85, the ratio is A0/A = 0.054. In an ideal
chevron form, A0/A= 1/9=0.111 (Hudleston, 1973).
Thus, even at this low limb dip the fold for this case
has a strong chevron character.

We have computed results to terms0y 3 for the sym-
metric folding of a viscous multilayer by means of the
method described in Johnson and Fletcher (1994), for
which the anisotropic ¯uid serves as an approxi-
mations, to study the e�ect of ®nite-limb-length to
thickness ratio, (L/2)/H. The ease of slip on the inter-
faces is assigned to be equivalent to the above case,
m = 8. For (L/2)/H = 5, at y=7.88 and X/X0=0.73,
A0/A = 0.013, indicating a much less straight-limbed
structure. For (L/2)/H = 10, at y=6.38 and X/
X0=0.82, A0/A = 0.020; and for (L/2)/H = 40, at
y=5.88 and X/X0=0.86, A0/A = 0.050. Thus, for the
multilayer, the transition to chevron form is well
underway at low limb dip, even for a modest degree of
anisotropy, provided the limb length to thickness ratio
is relatively large. In the multilayer, rounding at the
hinges will always be present at the scale of the layer
thickness.

3.2. Viscous multilayer and deformation within a layer

The approximate solution for the viscous multilayer
also provides the components of stress and rate of de-
formation within the layer and the rate of interfacial
slip. These results conform qualitatively to obser-
vations of strain and fold form in the hinge regions of
some natural folds (Chapple and Spang, 1974). They
provide a basis for comparison with Ramsay's kin-
ematic model.

The normal rate of deformation, Dxx, is no longer
uniform; its mean or basic-state value is denoted by an
overbar, �Dxx. For the small dip in the example, it suf-
®ces to show the results for Dxx and Dxz, rather than

for components referred to axes parallel and normal to
layering.

The spatial distribution of the component Dxx shows
three e�ects (Fig. 5a). The most prominent feature is
an increase (lower negative value) in the external por-
tion of the hinge and a decrease (greater negative
value) in the internal hinge region. This corresponds to
bending superposed on uniform layer-parallel shorten-
ing with the normalized basic-state value of ÿ1.
Second, there is a noticeable reduction in the rate of
shortening along the limbs, and a corresponding mean
increase at the hinges. Third, there is a pronounced
asymmetry, with greater concentration of shortening in
the internal hinge region. This last e�ect is also shown
by the distribution of the interface-parallel rate of de-
formation, Dss (Fig. 6a).

The rate of layer-parallel shear, Dxz, within the layer
is small (Fig. 5b). An estimate of the partitioning of
bulk layer-parallel shear between that internal to the
layer and that from interfacial slip from Eq. (9a) is

�Dfvsg=H �=�s 0xz=2Z� � 1=o� �20�
where vs is the velocity component locally tangent to
the interface. With increasing dip, the distribution of
D{vs} goes from one that is sinusoidal along the limb
to one that is nearly uniform along the bulk of the
limb and falls o� steeply in the hinge regions (Fig. 6b).

In the mechanical analyses discussed here, layers are
incompressible and voids cannot open along the
hinges. Generalization to include hinge dilation is
possible. Dilation might involve di�usive transport of
material from the fold limbs or from the layer's
strongly compressed internal hinge region itself. Flow
of soft interbeds towards the hinge has been proposed

Fig. 6. Distribution of (a) the tangential normal stress, Dss, (b) the

rate of interfacial slip, D{ns}, and (c) the variable part of the normal

stress, all on the upper surface of the layer, for the same case as in

Fig. 5. The normalizing quantities are D �=j �D xxj, n �=Hj �D xxj, and
s �=2Znj �D xxj.

Fig. 5. Distribution of the rate of deformation components (a), Dxx,

and (b), Dxz, normalized by the absolute value of the bulk rate of

shortening, jDxxj in the left-dipping limb of a symmetric viscous mul-

tilayer fold, as obtained from the third-order analysis. Parameters

are (L/2)/H = 10, dip y=68, and slip parameter o �=1/7, corre-

sponding to an e�ective viscosity ratio m= 8. See text for further

discussion.
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(Williams, 1980). These mechanisms maintain constant
cross-sectional area. An opening may be created and
®lled either by ¯uid or solid material transported from
a more distant source. The tendency for such e�ects is
indicated by the normal stress distribution along a
layer interface (Fig. 6c, see also Cobbold, 1976). The
variable part of the normal stress is very large for such
a low limb dip with tension concentrated across the
hinge. This would lead to ¯ow of any weak interbed
material, or to the di�usive transport of soluble
phases, or may, in concert with pore ¯uid pressure,
result in interfacial fracture and opening of a void
space. A portion of a layer near the hinge may act like
a free plate, built in away from the hinge. If this por-
tion is long enough, it may undergo localized buckling,
providing a mechanism for producing a bulbous hinge
structure. Cobbold (1976) gives a result of this type on
the normal stress in an anisotropic medium, and points
out its bearing upon metamorphic di�erentiation by
limb dissolution and hinge precipitation. Gray and
Durney (1979, see their ®g. 2 and discussion in text)
have carried out an analysis of such di�erentiation for
the multilayer case.

4. SummaryÐchevron folds

Geometric, evolutionary, and kinematic models for
chevron folds and chevron folding provide a fruitful
subject for critical discussion. While these models dis-
till much experience from the ®eld examination of
folds, a ®eld study informed by mechanical analysis of
simple models would involve other quantitative obser-
vations. As anticipated, the geometric model approxi-
mates folds seen in nature, especially when the ¯ow of
soft interbeds or development of saddle reefs leads to
a nearly uniform thickness of the sti� layers through
their hinges. The evolutionary model does not accom-
modate layers of unequal thickness, and explanatory
power is attributed to this fact for observed features of
natural chevron folds. However, we contend that this
explanation can only be provided through the explicit
cause and e�ect constructs of a complete mechanical
model. An essential feature of such a procedure is that
such a model may fail to produce observed features; it
is accordingly refutable.

Mechanical modeling of the early stages of folding
in an anisotropic viscous medium or viscous multilayer
with interfacial slip shows a transition between sinusoi-
dal and chevron forms (for ®nite amplitude simu-
lations see Casey and Huggenberger, 1985; Cobbold,
1976). Deformation within the layers of the multilayer
is in good accord with observation. It is clear that sat-
isfactory models for natural chevron folds could be
further pursued by this methodology, introducing
re®nements in the areas of constitutive behavior, and a

treatment of a sequence with unequally thick layers.
Such models would provide a sound basis for inter-
preting all quantitative data from natural folds, includ-
ing systematic discrepancies from idealized geometry.

The failure of Ramsay's kinematic model is at least
one example of the inability to make sense of a process
of deformation, despite a great deal of observational
experience in the ®eld, without a working knowledge
of a complete mechanics. We would contend that this
example is not an exception and o�er a second
example to further illustrate this point.

5. Two mechanisms for eÂ chelon vein formation

The laboratory experiments of Riedel (1929) and
Cloos (1955) illustrated one possible mechanism for
the formation of eÂ chelon vein segments: when a clay
cake was deformed by sliding one underlying board
past another, simulating a narrow strike-slip fault at
depth, a broader zone of shearing and fracturing devel-
oped within the clay cake. When the upper surface of
the clay cake was wet, opening fractures appeared
there, oriented about 458 from the trend of the shear
zone. With further shearing, the central part of the
fractures rotated to greater angles, while propagation
continued at the fracture tips in the 458 direction. This
mechanism created eÂ chelon fractures with sigmoidal
shapes. These fractures in clay have been used as poss-
ible analogs for eÂ chelon vein segments in rock, and
their development has been described in terms of a
kinematic model based on simple shearing deformation
(Ramsay, 1967).

Laboratory experiments by Sommer (1969) illus-
trated another possible mechanism for eÂ chelon vein
formation. Sommer loaded glass rods in tension until
an opening fracture developed on a diametral plane.
Then a torque was added to the applied load to intro-
duce a spatial rotation of the principal stress trajec-
tories about the radial direction, parallel to fracture
propagation. In the terminology of fracture mechanics
(Lawn and Wilshaw, 1975), this corresponds to a mix-
ture of mode I loading (opening) and mode III loading
(shearing parallel to the fracture tip). With further
propagation the parent fracture broke down into an
array of eÂ chelon partial fractures with surfaces that
twist about an axis parallel to the propagation direc-
tion. These partial fractures have been used as possible
analogs for eÂ chelon vein segments (Pollard et al.,
1982).

5.1. Nature and cause of debates about eÂchelon vein
formation

Since these early experiments numerous structural
geologists, including Shainin (1950), Wilson (1952),
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Roering (1968), Lajtai (1969), Hancock (1972), Beach
(1975), Knipe and White (1979), Ramsay (1980),
Rickard and Rixon (1983), Ramsay and Huber (1983,
pp. 23±26 and 48±52), Nicholson and Pollard (1985),
Granier (1985), Collins and De Paor (1986), Engelder
(1987), Nicholson and Ejiofor (1987), Ramsay and
Huber (1987, pp. 595±640), Shaoxun and Xiaoshuang
(1988), Craddock and van der Pluijm (1988), Rothery
(1988), Olson and Pollard (1989), and Smith (1995),
have described and interpreted eÂ chelon vein segments,
some with sigmoidal shapes, and some forming conju-
gate arrays.

A number of debates have arisen in this literature.
For example, are the vein segments `tensile' or `shear'
in origin? That is, do they form perpendicular to the
least compressive (most tensile) stress, or on planes
oriented oblique to the principal stress directions that
carry signi®cant resolved shear stress? Do the segments
predate and serve to localize the shearing deformation
along the array, or does the zone of shearing predate
and serve to localize the development of the fractures?
Does the angle, d, between the trend of the array and
the trend of individual segments enable one to dis-
tinguish tensile origins (extension fractures form at
d=408±458) from shear origins (Riedel shears form at
d=108±208), or does it distinguish volumetric increase
(positive dilation produces arrays with d < 458) from
volumetric decrease (negative dilation produces arrays
with d>458) as superimposed on simple shear defor-
mation (d=458)? Is the sigmoidal shape of vein seg-
ments diagnostic of rotation within a shear zone, or of
a curved fracture propagation path caused by mechan-
ical interaction of two adjacent opening fractures?

There seems little doubt that the two mechanisms
mentioned above can produce eÂ chelon vein segments,
but the debates continue about interpretation methods,
and diagnostic criteria are poorly understood. Here we
ask: Why does this uncertainty concerning the in-
terpretation of eÂ chelon veins persist, given the fact that
the original concepts stemming from the experiments
of Riedel (1929) and Sommer (1969) are now 70 and
30 years old, respectively? Are the problems intract-
able? We doubt it. Are the problems unimportant? The
volume of literature attests to the importance attribu-
ted to these structures by structural geologists. Rather,
we suggest that the lack of progress can be attributed
to the inadequate methodology used by structural ge-
ologists to address the origins of these structures.
Furthermore, we propose that a methodology based
on a complete application of continuum mechanics
would provide the understanding and the diagnostic
tools for interpreting eÂ chelon veins.

Because di�erent physical mechanisms can appar-
ently result in similarly shaped vein segments, in-
terpretations based only on the magnitude of vein-
array angles or the angle between conjugate arrays are

likely to be problematic. Limiting an analysis to con-
siderations of kinematic quantities and ignoring the
role of stresses and the necessity for mechanical equili-
brium, as well as the speci®c constitutive relationships
describing material behavior, is likely to be inadequate.
Most of the studies cited above involve interpretations
of eÂ chelon veins in the context of a homogeneous
strain ®eld (e.g. using Mohr circles for strain) or a
homogeneous stress ®eld (e.g. using Mohr±Coulomb
failure envelopes). However, once a vein segment has
initiated, such a context is necessarily inappropriate
because the discontinuity in displacements across a
vein segment produces a strongly heterogeneous local
strain and stress ®eld.

In an article published in 1991 in the Journal of
Structural Geology, a di�erent approach for investi-
gating and interpreting eÂ chelon vein arrays was advo-
cated (Olson and Pollard, 1991). The authors
suggested that future interpretations utilize solutions
for the appropriate boundary and initial value pro-
blems of continuum mechanics. These solutions are
not limited to consideration of strain or rate of defor-
mation. Rather, they incorporate all the mechanical
quantities of interest and they are based on explicit re-
lationships among these quantities derived from funda-
mental principles (e.g. conservation of mass,
momentum, and energy). Furthermore, these solutions
employ speci®c constitutive relationships, rather than
an appeal to brittle vs ductile behavior. For example,
if the veins formed in an elastic rock, the stress tensor
is related to the in®nitesimal strain tensor through
Hooke's Law (Timoshenko and Goddier, 1970). If the
veins formed in a rock undergoing viscous ¯ow, the
stress tensor and pressure are related to the rate of de-
formation tensor through Stokes' equations (White,
1974). More complex constitutive laws (e.g. viscoelastic
or plastic) can be employed if the elementary laws
prove inadequate or if laboratory data suggest such
laws are warranted. This is what we mean by a com-
plete mechanics.

6. Heterogeneous strain ®elds associated with eÂ chelon
veins

To illustrate a possible heterogeneous strain ®eld as-
sociated with the opening of eÂ chelon vein segments, we
consider a model of eÂ chelon crack growth in a linear
elastic body. The region of interest has a cross-sec-
tional area of 1 m2 and an initial array of ®ve ¯aws
(short cracks) with lengths of 1 cm, spacings of 5 cm,
and a ¯aw-array angle d=508. During the numerical
experiment these ¯aws grow into sigmoidal cracks with
lengths of about 8 cm (Fig. 7). The constitutive proper-
ties of the elastic material are Young's modulus,
E = 60 GPa, and Poisson's ratio, n=0.25 (Clark,
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1966), and the fracture toughness is KIC=2.7 MPa
m1/2 (Atkinson and Meredith, 1987). This numerical
model experiment is described more fully in Olson
and Pollard (1991), but certain aspects of the strain

®eld near the three central cracks are shown in Fig.
7(a±c).

The boundary conditions before propagation of the
cracks consist of remote stresses, sr

ij, and stresses act-
ing on elements adjacent to the crack surfaces, sc

ij,
de®ned by the components:

sr
xx � ÿp, sr

xy � 0, sr
yy � ÿp in the remote field;

sc
xx � ÿp, sc

xy � 0 on the crack surface: �21�

The magnitude of the internal ¯uid pressure, p, is
equal to the remote isotropic normal compressive
stress.

To initiate crack growth a displacement of
1.55 � 10ÿ2 cm is imposed on the left- and right-hand
edges of the body in the x-coordinate direction, and
the top and bottom edges are not allowed to displace
in y. Thus, the remote components of in®nitesimal
strain induced by these displacements are:

er
xx � er

1 � 3:1� 10ÿ4, er
yy � er

2 � 0: �22a�

These components are the principal strains. The
remote maximum shear strain induced by these displa-
cements is:

gr
max � �er

1 ÿ er
2� � 3:1� 10ÿ4: �22b�

This is the shear strain associated with material lines
at 458 to the coordinate axes, and therefore it is ap-
proximately the remote shear strain parallel to the
array of cracks. These strain components would be
homogeneously distributed throughout the body in
absence of any cracks: the cracks perturb this strain
®eld as illustrated in Fig. 7.

The stress intensity factors at the ¯aw tips in the
initial state are about KI=2.76 MPa m1/2, just su�-
cient to exceed the fracture toughness and cause
propagation. The ¯aws start to propagate in the
y-coordinate direction, perpendicular to the remote
least compressive stress (applied extension), until sig-
ni®cant mechanical interaction with neighboring cracks
diverts their paths into sigmoidal traces directed
toward their neighbors (Fig. 7a). As the cracks pro-
pagate, a strain ®eld develops in the elastic body that
is non-homogeneous in both space and time. Each
increment of crack propagation is prescribed to be
perpendicular to the local maximum tensile stress
(maximum extensional strain, e1) just ahead of the
fracture tip (Thomas and Pollard, 1993). In Fig. 7(a)
the direction of e1 throughout the ®eld of view is
indicated by the tic marks. The magnitude of e1 is
contoured in Fig. 7(b) where the shaded regions mark
the strain concentrations associated with the crack
tips.

Fig. 7. Di�erent components of the heterogeneous strain ®eld near a

set of ®ve eÂ chelon cracks. (a) Trajectories of the maximum principal

strain, e1. (b) Contoured magnitudes of e1 multiplied by 104. (c)

Magnitudes of the maximum shear strain, gmax multiplied by 104.
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Because the conditions of crack growth are known
in this experiment, we can say with certainty that the
remote principal strain and stress orientations are
recorded by the orientations of crack surfaces near
their middles, but not near their tips. There, the mech-
anical interaction with neighbors produces crack sur-
faces that are not perpendicular to the remote least
compressive stress (maximum extensional strain).

An estimate of the average strain accommodated
by vein opening is given by the segment aspect ratio,
the ratio of opening displacement discontinuity to
segment length. For dominantly elastic deformation
this aspect ratio should not exceed laboratory strains
associated with the onset of inelastic deformation,
typically less than a few percent (Jaeger and Cook,
1969). Some vein segments have such small aspect
ratios (Ramsay and Huber, 1983, p. 51, ®g. 3.22A);
other vein segments are observed with aspect ratios
as great as 10% (Ramsay and Huber, 1983, p. 51,
®g. 3.22B), suggesting that the material properties
during growth of these veins was, in part, inelastic.
Such veins require a di�erent constitutive law from
the one employed above. For example, one might
turn to solutions for fracture growth in dilatant ma-
terials (Casey, 1980), or in viscoelastic materials
(Kanninen and Popelar, 1985).

6.1. Possible errors introduced when using a kinematic
model

According to the most elementary kinematic model
(Ramsay, 1967, pp. 88±91), vein segments form during
the initial increment of deformation in a zone of
homogeneous simple shearing and are oriented perpen-
dicular to the maximum extension, that is at an angle,
a=458 to the shear zone. The shear strain is related to
the rotation of a material line element within the zone
as (Ramsay and Huber, 1983, p. 24):

g � cotaÿ cota 0 �23a�

where a is the initial angle between the line element
and the shear zone boundary, and a ' is the ®nal angle
of the rotated line element. In this context the central
part of a vein segment is assumed to behave like a ma-
terial line element and therefore to rotate during shear-
ing according to Eq. (23a).

To quantitatively assess the possible errors intro-
duced by using this kinematic model, we apply it to
the sigmoidal eÂ chelon cracks illustrated in Fig. 7. We
use this array because we know the actual kinematics.
From the geometry of the cracks alone (Fig. 8), the
shear zone boundaries are interpreted to trend at an
angle of 508 to the central part of the cracks. These
parts are interpreted to have rotated from a=458 to
a '=508, so the shear strain is:

g � cot458ÿ cot508 � 1:6� 10ÿ1: �23b�
Thus, using the kinematic model, one would inter-

pret the eÂ chelon crack segments in Fig. 8 as lying in a
shear zone with about 16% shear strain.

The actual distribution of shear strain associated
with these sigmoidal eÂ chelon cracks is shown in Fig. 7.
Although it clearly is not homogeneous, we can com-
pute the average shear strain across a zone of compar-
able width to that interpreted in Fig. 8, that is
W = 6.4 cm. According to the solution to the elastic
boundary value problem, the net tangential displace-
ment across this zone is ut=4.8 � 10ÿ3 cm. Thus, the
average shear strain is:

g � ut

W
� 4:8� 10ÿ3 cm

6:4 cm
� 7:5� 10ÿ4: �24a�

The actual shear strain is over two orders of magni-
tude less than that calculated assuming homogeneous
simple shear. It should be clear from this comparison
that signi®cant quantitative errors can result if a kin-
ematic model is adopted for an eÂ chelon array that
formed by fracture growth in an elastic rock.

A diagnostic criterion to distinguish sigmoidal vein
segments formed by rotation in a shear zone is
measurement of the net tangential displacement, ut,
across the zone. This displacement should be consist-
ent with the magnitude of the shear strain inferred
from the vein geometry. For the geometry shown in
Fig. 8:

ut � gW � �1:6� 10ÿ1��6:4 cm� � 1:0 cm: �24b�
Cross-cutting markers would be o�set by about 1.0 cm
across the 6.4 cm wide shear zone, compared to an o�-

Fig. 8. Interpretation of the eÂ chelon crack array shown in Fig. 7

using a simple shear kinematic model. The estimated homogeneous

shear strain, g, is 0.16 inside the shear zone and zero outside the

zone.
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set of only 4.8 � 10ÿ3 cm due to crack opening and
propagation in an elastic rock. Furthermore, one
would expect aspect ratios on the order of 10% for
vein segments in such a shear zone.

7. A third mechanism for eÂ chelon vein formation

As an example of the richness that accompanies the
use of a complete mechanical analysis, we review a
third mechanism for the formation of eÂ chelon vein
arrays that was discovered during numerical exper-
iments (Olson and Pollard, 1991). In the preceding dis-
cussion we illustrated the perturbed strain ®eld near
arrays of eÂ chelon cracks (Fig. 7a±c), but the model
does not address the cause(s) behind the development
of the array itself: the initial ¯aws were prescribed to
be in an eÂ chelon geometry. Here we describe how the
perturbed stress ®eld in the vicinity of a single opening
crack can provide an explanation for the eÂ chelon geo-
metry itself.

The distribution of the normal stress component,
sxx, near a single, ¯uid-pressurized fracture in an in®-
nite elastic body is shown in Fig. 9 (Olson and
Pollard, 1991). The uniform remote compressive stress
is subtracted from the stress ®eld so the contoured
values are the stress perturbation resulting from the
opening of the crack. The normal stress in the regions
that extend in front of the crack tips is tensile with a
local stress concentration around the tip. Here, growth
of sub-parallel cracks would be enhanced. In contrast,
in the regions to either side of the crack, sxx is com-
pressive, de®ning a stress shadow in which the growth
of sub-parallel cracks would be inhibited.

To examine the role of this stress perturbation on
the generation of eÂ chelon arrays, Olson and Pollard
(1991) considered a population of randomly located
¯aws in a two-dimensional elastic body, subject to
plane strain conditions. They used a boundary-element
computer code modi®ed from Crouch and Star®eld
(1983) with a linear elastic fracture propagation cri-
terion (Erdogan and Sih, 1963; Ingra�ea, 1981). The
length of the ¯aws was 0.1 m, and the area of the
representative volume of rock was 100 m2. The bound-
ary conditions were:

sr
xx � ÿ 20 MPa, sr

xy � 0 MPa,

sr
yy � ÿ 21 MPa in the remote field;

sc
xx � ÿ 24:7 MPa, sc

xy � 0 MPa on the crack surfaces:

�25�

This state of stress is thought to be plausible for con-
ditions at about 1 km depth. The maximum circumfer-
ential stress at the crack tips is used as a criterion for
propagation (Erdogan and Sih, 1963) and the fracture
toughness is taken as KIC=1.9 MPa m1/2 (Atkinson
and Meredith, 1987).

One of many fracture patterns developed with di�er-
ent random locations of ¯aws in these numerical ex-
periments is shown in Fig. 10. Note how the
mechanical interaction between closely spaced cracks
in each other's stress shadow prevents growth (Fig. 10,
area a) and how the lack of strong positive interaction
for widely spaced eÂ chelon cracks did not promote
propagation (Fig. 10, area b). In contrast, closely-
spaced eÂ chelon ¯aws with relatively small vein-array
angles did grow readily (Fig. 10, areas c,d).

Fig. 9. Contours of the magnitude of the stress component sxx, the
normal stress acting in the x-coordinate direction as induced by a

uniform ¯uid pressure within a crack. A stress shadow is indicated

by the negative (more compressive) values to each side of the crack,

and a stress concentration by the positive (more tensile) values ahead

of the crack tips.

Fig. 10. Resulting crack pattern from a numerical experiment in

which 100 randomly located ¯aws are loaded by a remote biaxial

compressive stress and an internal ¯uid pressure such that they pro-

pagate. Mechanical interaction causes some to turn toward neighbor-

ing cracks forming sigmoidal eÂ chelon arrays. Boxed regions are

referred to in the text.
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The angular relationships between cracks and their
arrays were generalized from 100 numerical exper-
iments. Because the initial ¯aw distributions were ran-
dom, a wide range of crack spacings and crack-array
angles were present. Arrays with d < 508 were favored
for growth relative to arrays with d>508. For moder-
ate vein-array angles (d < 458), 75±100% of the cracks
propagated, whereas less than 30% propagated with
d>708. For those cases with d < 558, increasing spa-
cing decreased the e�ects of mechanical interaction
that promote propagation (Fig. 10).

The numerical experiments demonstrate that a
viable mechanism for the formation of eÂ chelon vein
arrays is self organization resulting from mechanical in-
teraction of randomly located ¯aws. This mechanism is
distinct from localization within a shear zone and from
localization at the tip of a mixed mode I±III fracture.
A diagnostic criterion distinguishing vein segments
formed by the latter mechanism is their direct connec-
tion to the parent vein (Nicholson and Ejiofor, 1987).
If such connections are found by serial sectioning the
rock specimens, this would rule out the mechanism of
self-organization.

8. SummaryÐeÂ chelon veins

Whereas many discussions of eÂ chelon veins deal
only with kinematic models that omit the strain pertur-
bations caused by vein opening, a complete mechanical
model explicitly includes the vein segments and their
heterogeneous ®elds of strain and stress. With a com-
plete model (in the example included herein limited to
linear elastic materials) one can reproduce commonly
observed features, such as sigmoidal vein shape, shear
displacements across veins, and eÂ chelon arrays. We
suggest that complete models utilizing visco-elastic
and/or plastic material properties would reproduce
many of the features common to eÂ chelon vein seg-
ments in shear zones, such as large apertures relative
to segment lengths.

The elastic models helped to identify a third mech-
anism for eÂ chelon vein formation that is compatible
with the full range of vein-array angles reported in the
literature (d=08 to 558), demonstrating that interpre-
tive methods using this angle to discriminate a shear
zone origin from an origin related to breakdown of a
parent opening fracture are not diagnostic.
Furthermore, these models show how eÂ chelon veins
may be the precursor to, and not the result of, loca-
lized shear deformation.

9. Concluding remarks

Tens of millions of dollars have been spent for lab-

oratory determination of the mechanical properties of
rocks, but little use is made of the resulting knowledge
of constitutive behavior in structural geology and tec-
tonics. Much time and e�ort is spent in structural ge-
ology classes teaching an incomplete mechanics, in
which concepts of stress and strain and loose or
incomplete statements of material behavior, are set
forth to little apparent purpose. As a consequence,
fundamental laws such as conservation of momentum,
and elementary principles such as continuity of trac-
tion and restrictions on velocity components at inter-
faces, are violated, ignored, or not taken advantage of
in setting up structural and tectonic hypotheses. The
imaginations of many structural geologists are limited
to an appreciation only of motions such as those de-
rived from a uniform velocity gradient tensor. In an
e�ort to ®t the natural world within such a conceptual
basis, a plethora of special notions has been created,
all of which are unnecessary and many of which lead
to error.

The ®elds of deformation obtained from solutions to
boundary and initial-value problems simulate essential
aspects of the processes producing the structures we
observe and map in the ®eld. In geometrical and kine-
matical modeling, on the other hand, the causal con-
nection between these structures and the conditions of
loading and constitutive behavior of rocks is too often
pre-empted by a speci®cation of mechanically unrealiz-
able motions whose only virtue is that they lead to ap-
proximations of structural form, or permit restoration.
On the basis of these models, no connection to the
underlying physical process can be made.

We have shown, in two examples, that mechanical
analysis leads to a richer collection of results and the
posing and answering of many questions relevant to
process. These results may be carried into the ®eld as a
sound intuitive basis for observing and interpreting
similar, and, often, apparently quite di�erent structures
(Fletcher and Pollard, 1981). Conversely, the e�ort to
simulate geometry alone often forces incomplete and
physically implausible interpretations of kinematics
and process. While a complete mechanical analysis is,
in some respects, more di�cult to learn and requires
more work in application, it provides testable hypoth-
eses and refutable outcomes.

It is not plausible even to suppose, much less to
demonstrate, that a methodology based upon geo-
metric idealization of structures, and a procedure for
creating a sequence of restored structures that
stipulates the motions required, can be consistent with
a methodology based upon a complete mechanics. We
do not deny that the former methodology may address
a legitimate question in structural geology, and one
motivated by economic concerns. On the other hand,
it cannot replace, or even contribute to, the latter
methodology as a means of unraveling the underlying
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processes of deformation. This is because geometric
approximation of ®nal or intermediate structures, sti-
pulation of generally ad hoc types of motion within a
body, and a lack of explicit dependence upon causal
elements such as applied loads, stress equilibrium, and
constitutive relations, sensu stricto, are theoretically at
odds with a complete mechanics.

We propose, as a goal for the 21st century, a signi®-
cant revision of the educational objectives for courses
in structural geology and tectonics, so that students
are prepared to use the full complement of mechanical
tools necessary to design a plan for ®eld data collec-
tion, set up and solve relevant boundary-value pro-
blems, and evaluate the correspondence between
models and data.
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